Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3010, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321224

RESUMEN

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Asunto(s)
Microglía , Degeneración Retiniana , Animales , Humanos , Ratones , Microglía/metabolismo , Retina/patología , Degeneración Retiniana/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
2.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237602

RESUMEN

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Asunto(s)
Receptores de Glucagón , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Receptores de Glucagón/metabolismo , Regulación hacia Abajo , Ratones Noqueados , Riñón/metabolismo , Homeostasis/fisiología , Lípidos
3.
PeerJ ; 12: e16739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282864

RESUMEN

GPR149 is an orphan receptor about which little is known. Accordingly, in the present study, we mapped the tissue expression of Gpr149 in mice using three complementary approaches: quantitative PCR, in situ hybridization, and a newly generated Gpr149-Cre reporter mouse model. The strongest expressions of Gpr149 were observed in neurons of the islands of Calleja, the ventromedial hypothalamus, and the rostral interpeduncular nucleus. Moderate-to-low expression was also observed in the basal forebrain, striatum, hypothalamus, brainstem, and spinal cord. Some Gpr149 expression was also detected in the primary afferent neurons, enteric neurons, and pituitary endocrine cells. This expression pattern is consistent with the involvement of GPR149 signaling in the regulation of energy balance. To explore the physiological function of GPR149 in vivo, we used CRISPR-Cas9 to generate a global knockout allele with mice lacking Gpr149 exon 1. Preliminary metabolic findings indicated that Gpr149-/- mice partially resist weight gain when fed with a high-fat diet and have greater sensitivity to insulin than control mice. In summary, our data may serve as a resource for future in vivo studies on GPR149 in the context of diet-induced obesity.


Asunto(s)
Hipotálamo , Obesidad , Receptores Acoplados a Proteínas G , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Homeostasis/genética , Hipotálamo/metabolismo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética , Aumento de Peso
4.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848446

RESUMEN

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Asunto(s)
Adiponectina , Gluconeogénesis , Riñón , Animales , Masculino , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ácido Pirúvico/metabolismo
5.
J Anat ; 243(6): 936-950, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37403978

RESUMEN

Vagal afferent neuronal somas are in the nodose and jugular ganglia. In this study, we identified extraganglionic neurons in whole-mount preparations of the vagus nerves from Phox2b-Cre-ZsGreen transgenic mice. These neurons are typically arranged in small clusters and monolayers along the cervical vagus nerve. Although infrequent, these neurons were sometimes observed along the thoracic and esophageal vagus. We performed RNAscope in situ hybridization and confirmed that the extraganglionic neurons detected in this transgenic mouse strain expressed vagal afferent markers (i.e., Phox2b and Slc17a6) as well as markers that identify them as potential gastrointestinal mechanoreceptors (i.e., Tmc3 and Glp1r). We also identified extraganglionic neurons in the vagus nerves of wild-type mice that were injected intraperitoneally with Fluoro-Gold, thereby ruling out possible anatomical discrepancies specific for transgenic mice. In wild-type mice, extraganglionic cells were positive for peripherin, confirming their neuronal nature. Taken together, our findings revealed a previously undiscovered population of extraganglionic neurons associated with the vagus nerve. Going forward, it is important to consider the possible existence of extraganglionic mechanoreceptors that transmit signals from the abdominal viscera in future studies related to vagal structure and function.


Asunto(s)
Mecanorreceptores , Nervio Vago , Ratones , Animales , Neuronas Aferentes , Neuronas , Ratones Transgénicos
6.
Bioessays ; 45(8): e2300056, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37264690

RESUMEN

Immunohistochemistry is a commonly used technique in research and pathology laboratories worldwide. However, in recent years, there has been a significant decrease in the number of Pubmed entries using the term immunohistochemistry. This decline can be attributed to two factors: increased awareness of the issue of unreliable research antibodies and the availability of novel RNA in situ hybridization techniques. Using the example of immunohistochemistry, this text discusses the factors that can affect good laboratory and publishing practices, or their lack thereof.


Asunto(s)
ARN , Inmunohistoquímica , Hibridación in Situ
7.
Commun Biol ; 6(1): 533, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198396

RESUMEN

Microglia play a role in the pathogenesis of many retinal diseases. Fundus spots in mice often correlate with the accumulation of activated subretinal microglia. Here we use a semiquantitative fundus spot scoring scale in combination with an unbiased, state-of-the-science forward genetics pipeline to identify causative associations between chemically induced mutations and fundus spot phenotypes. Among several associations, we focus on a missense mutation in Lipe linked to an increase in yellow fundus spots in C57BL/6J mice. Lipe-/- mice generated using CRISPR-Cas9 technology are found to develop accumulation of subretinal microglia, a retinal degeneration with decreased visual function, and an abnormal retinal lipid profile. We establish an indispensable role of Lipe in retinal/RPE lipid homeostasis and retinal health. Further studies using this new model will be aimed at determining how lipid dysregulation results in the activation of subretinal microglia and whether these microglia also play a role in the subsequent retinal degeneration.


Asunto(s)
Degeneración Retiniana , Animales , Ratones , Modelos Animales de Enfermedad , Pruebas Genéticas , Lípidos , Ratones Endogámicos C57BL , Degeneración Retiniana/genética , Degeneración Retiniana/patología
8.
Cell Metab ; 35(3): 429-437.e5, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889282

RESUMEN

Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.


Asunto(s)
Intoxicación Alcohólica , Humanos , Animales , Ratones , Etanol/toxicidad , Factores de Crecimiento de Fibroblastos/metabolismo , Encéfalo/metabolismo
9.
Med Sci (Paris) ; 39(2): 170-176, 2023 Feb.
Artículo en Francés | MEDLINE | ID: mdl-36799754

RESUMEN

This article reflects on the disastrous effects that the managerial model had on contemporary biomedical research. It is argued that the time has come to reinvent an "antibureaucratic laboratory" which favors decision-making based on the intrinsic values of the researcher rather than the need to please external committees. Towards achieving this goal, governmental agencies should rely less on peer review and adopt new funding mechanisms. It is also predicted that the advent of the antibureaucratic laboratory" will only come at the cost of a revolution in the mentalities of all those involved in research.


Title: Peut-on affranchir la recherche biomédicale du modèle managérial ? Abstract: L'article de Romain Brette, récemment publié dans médecine/sciences, décrivait le modèle managérial de la recherche biomédicale comme « profondément dysfonctionnel ¼. Nous souscrivons à cette critique et apportons dans ce nouvel article, des éléments de réflexion complémentaires quant à la légitimité du modèle managérial. Nous soulevons en outre la question de la possibilité de s'affranchir de ce modèle, à la faveur d'un « laboratoire antibureaucratique ¼, un environnement au sein duquel la prise de décision reposerait sur les motivations intrinsèques du chercheur plutôt que sur la nécessité de rentrer dans le moule des critères appliqués par des comités d'évaluation. Il est également argumenté que l'avènement du « laboratoire antibureaucratique ¼ serait favorisé par la création d'agences de financement qui seraient pluralistes. Il est également prédit que la recherche biomédicale ne sera sauvée qu'au prix d'une (r)évolution des mentalités de tous les acteurs de la recherche.


Asunto(s)
Investigación Biomédica , Humanos , Investigadores
10.
IBRO Neurosci Rep ; 12: 228-239, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35746965

RESUMEN

Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.

11.
J Anat ; 240(4): 772-774, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34729780
12.
J Vis Exp ; (175)2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34605820

RESUMEN

This study describes a protocol for the multiplex in situ hybridization (ISH) of the mouse jugular-nodose ganglia, with a particular emphasis on detecting the expression of G protein-coupled receptors (GPCRs). Formalin-fixed jugular-nodose ganglia were processed with the RNAscope technology to simultaneously detect the expression of two representative GPCRs (cholecystokinin and ghrelin receptors) in combination with one marker gene of either nodose (paired-like homeobox 2b, Phox2b) or jugular afferent neurons (PR domain zinc finger protein 12, Prdm12). Labeled ganglia were imaged using confocal microscopy to determine the distribution and expression patterns of the aforementioned transcripts. Briefly, Phox2b afferent neurons were found to abundantly express the cholecystokinin receptor (Cck1r) but not the ghrelin receptor (Ghsr). A small subset of Prdm12 afferent neurons was also found to express Ghsr and/or Cck1r. Potential technical caveats in the design, processing, and interpretation of multiplex ISH are discussed. The approach described in this article may help scientists in generating accurate maps of the transcriptional profiles of vagal afferent neurons.


Asunto(s)
Neuronas Aferentes , Ganglio Nudoso , Animales , Proteínas Portadoras , Hibridación in Situ , Ratones , Proteínas del Tejido Nervioso , Receptores de Ghrelina/metabolismo , Nervio Vago
13.
Mol Metab ; 54: 101350, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626852

RESUMEN

OBJECTIVE: The vagus nerve provides a direct line of communication between the gut and the brain for proper regulation of energy balance and glucose homeostasis. Short-chain fatty acids (SCFAs) produced via gut microbiota fermentation of dietary fiber have been proposed to regulate host metabolism and feeding behavior via the vagus nerve, but the molecular mechanisms have not yet been elucidated. We sought to identify the G-protein-coupled receptors within vagal neurons that mediate the physiological and therapeutic benefits of SCFAs. METHODS: SCFA, particularly propionate, signaling occurs via free fatty acid receptor 3 (FFAR3), that we found expressed in vagal sensory neurons innervating throughout the gut. The lack of cell-specific animal models has impeded our understanding of gut/brain communication; therefore, we generated a mouse model for cre-recombinase-driven deletion of Ffar3. We comprehensively characterized the feeding behavior of control and vagal-FFAR3 knockout (KO) mice in response to various conditions including fasting/refeeding, western diet (WD) feeding, and propionate supplementation. We also utilized ex vivo organotypic vagal cultures to investigate the signaling pathways downstream of propionate FFAR3 activation. RESULTS: Vagal-FFAR3KO led to increased meal size in males and females, and increased food intake during fasting/refeeding and WD challenges. In addition, the anorectic effect of propionate supplementation was lost in vagal-FFAR3KO mice. Sequencing approaches combining ex vivo and in vivo experiments revealed that the cross-talk of FFAR3 signaling with cholecystokinin (CCK) and leptin receptor pathways leads to alterations in food intake. CONCLUSION: Altogether, our data demonstrate that FFAR3 expressed in vagal neurons regulates feeding behavior and mediates propionate-induced decrease in food intake.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Nervio Vago/metabolismo , Animales , Conducta Alimentaria , Microbioma Gastrointestinal , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética
14.
Cell Metab ; 33(8): 1624-1639.e9, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34174197

RESUMEN

Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hierro/metabolismo , Lípidos , Ratones , Obesidad/metabolismo
15.
Front Neurosci ; 15: 626085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33597843

RESUMEN

The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.

16.
J Comp Neurol ; 529(1): 111-128, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356570

RESUMEN

While autonomic ganglia have been extensively studied in rats instead of mice, there is renewed interest in the anatomy of the mouse autonomic nervous system. This study examined the prevalence and anatomical features of a cell bridge linking two autonomic ganglia of the neck, namely, the nodose ganglion (NG) and the superior cervical ganglion (SCG) in a cohort of C57BL/6J mice. We identified a cell bridge between the NG and the cranial pole of the SCG. This cell bridge was tubular shaped with an average length and width of 700 and 240 µm, respectively. The cell bridge was frequently unilateral and significantly more prevalent in the ganglionic masses from males (38%) than females (21%). On each of its extremities, it contained a mixed of vagal afferents and postganglionic sympathetic neurons. The two populations of neurons abruptly replaced each other in the middle of the cell bridge. We examined the mRNA expression for selected autonomic markers in samples of the NG with or without cell bridge. Our results indicated that the cell bridge was enriched in both markers of postganglionic sympathetic and vagal afferents neurons. Lastly, using FluoroGold microinjection into the NG, we found that the existence of a cell bridge may occasionally lead to the inadvertent contamination of the SCG. In summary, this study describes the anatomy of a cell bridge variant consisting of the fusion of the mouse NG and SCG. The practical implications of our observations are discussed with respect to studies of the mouse vagal afferents, an area of research of increasing popularity.


Asunto(s)
Ganglio Nudoso/anatomía & histología , Ganglio Cervical Superior/anatomía & histología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/citología , Prevalencia , Ganglio Cervical Superior/citología
17.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33318075

RESUMEN

There has been a long-standing debate regarding the role of peripheral afferents in mediating rapid-onset anorexia among other responses elicited by peripheral inflammatory insults. Thus, the current study assessed the sufficiency of peripheral afferents expressing toll-like receptor 4 (TLR4) to the initiation of the anorexia caused by peripheral bacterial lipopolysaccharide (LPS). We generated a Tlr4 null (Tlr4LoxTB) mouse in which Tlr4 expression is globally disrupted by a loxP-flanked transcription blocking (TB) cassette. This novel mouse model allowed us to restore the endogenous TLR4 expression in specific cell types. Using Zp3-Cre and Nav1.8-Cre mice, we produced mice that express TLR4 in all cells (Tlr4LoxTB X Zp3-Cre) and in peripheral afferents (Tlr4LoxTB X Nav1.8-Cre), respectively. We validated the Tlr4LoxTB mice, which were phenotypically identical to previously reported global TLR4 knock-out mice. Contrary to our expectations, the administration of LPS did not cause rapid-onset anorexia in mice with Nav1.8-restricted TLR4. The later result prompted us to identify Tlr4-expressing vagal afferents using in situ hybridization (ISH). In vivo, we found that Tlr4 mRNA was primarily enriched in vagal Nav1.8 afferents located in the jugular ganglion that co-expressed calcitonin gene-related peptide (CGRP). In vitro, the application of LPS to cultured Nav1.8-restricted TLR4 afferents was sufficient to stimulate the release of CGRP. In summary, we demonstrated using a new mouse model that vagally-expressed TLR4 is selectively involved in stimulating the release of CGRP but not in causing anorexia.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Receptor Toll-Like 4 , Animales , Calcitonina , Lipopolisacáridos , Ratones , Ratones Noqueados , Neuronas Aferentes , Receptor Toll-Like 4/genética
18.
Biol Aujourdhui ; 214(3-4): 85-90, 2020.
Artículo en Francés | MEDLINE | ID: mdl-33357365

RESUMEN

In 1883, a case of daring plagiarism was revealed during a session of the Biology Society in Paris. This article discusses the details of this plagiarism and the identity of its perpetrator, a physician by the name of Spiridion Kanellis.


TITLE: Spiridion Kanellis, un plagiaire audacieux du XIXe siècle*. ABSTRACT: En 1883, un cas de plagiat qualifié d'audacieux était révélé lors d'une séance de la Société de biologie de Paris. Cet article discute les détails de ce plagiat et l'identité de son auteur, un médecin du nom de Spiridion Kanellis.


Asunto(s)
Plagio , Historia del Siglo XIX
19.
Sci Adv ; 6(22): eaaz6868, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32523992

RESUMEN

The mouse accessory olfactory system (AOS) supports social and reproductive behavior through the sensation of environmental chemosignals. A growing number of excreted steroids have been shown to be potent AOS cues, including bile acids (BAs) found in feces. As is still the case with most AOS ligands, the specific receptors used by vomeronasal sensory neurons (VSNs) to detect BAs remain unknown. To identify VSN BA receptors, we first performed a deep analysis of VSN BA tuning using volumetric GCaMP6f/s Ca2+ imaging. These experiments revealed multiple populations of BA-receptive VSNs with submicromolar sensitivities. We then developed a new physiology-forward approach for identifying AOS ligand-receptor interactions, which we call Fluorescence Live Imaging for Cell Capture and RNA sequencing, or FLICCR-seq. FLICCR-seq analysis revealed five specific V1R family receptors enriched in BA-sensitive VSNs. These studies introduce a powerful new approach for ligand-receptor matching and reveal biological mechanisms underlying mammalian BA chemosensation.

20.
Proc Natl Acad Sci U S A ; 117(23): 12931-12942, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457148

RESUMEN

Retinal disease and loss of vision can result from any disruption of the complex pathways controlling retinal development and homeostasis. Forward genetics provides an excellent tool to find, in an unbiased manner, genes that are essential to these processes. Using N-ethyl-N-nitrosourea mutagenesis in mice in combination with a screening protocol using optical coherence tomography (OCT) and automated meiotic mapping, we identified 11 mutations presumably causative of retinal phenotypes in genes previously known to be essential for retinal integrity. In addition, we found multiple statistically significant gene-phenotype associations that have not been reported previously and decided to target one of these genes, Sfxn3 (encoding sideroflexin-3), using CRISPR/Cas9 technology. We demonstrate, using OCT, light microscopy, and electroretinography, that two Sfxn3-/- mouse lines developed progressive and severe outer retinal degeneration. Electron microscopy showed thinning of the retinal pigment epithelium and disruption of the external limiting membrane. Using single-cell RNA sequencing of retinal cells isolated from C57BL/6J mice, we demonstrate that Sfxn3 is expressed in several bipolar cell subtypes, retinal ganglion cells, and some amacrine cell subtypes but not significantly in Müller cells or photoreceptors. In situ hybridization confirmed these findings. Furthermore, pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis. Importantly, electron microscopy analysis showed disruption of synapses and synaptic ribbons in the outer plexiform layer of Sfxn3-/- mice. Our work describes a previously unknown requirement for Sfxn3 in retinal function.


Asunto(s)
Proteínas de Transporte de Catión/genética , Degeneración Retiniana/genética , Segmento Externo de las Células Fotorreceptoras Retinianas/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electrorretinografía , Etilnitrosourea/toxicidad , Femenino , Humanos , Masculino , Ratones , Microscopía Electrónica , Mutagénesis , Mutación/efectos de los fármacos , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/patología , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/ultraestructura , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...